Magnetic Particle Spectrometry

Magnetic nanoparticles are forming a promising research field in modern science. Especially in medical imaging and therapy nanoparticles may act as solution in various problems. At our institute we develop imaging systems as well as own contrast agents. A correct characterization of these particles is important for the model based reconstruction technique and for particle synthesis quality control. To characterize those particles the institute of medical engineering developed a magnetic particle spectrometer (MPS). This system is basically a zero dimensional magnetic particle imaging device. It measures the particle time response to a varying magnetic field, but resigns the gradient field that is necessary for the spatial resolution.

The correct characterization demands a high homogeneous field generator to eliminate errors due to different excitation and reception. Furthermore the sensitivity has to be maximized, to make small samples measurable and to measure low concentrations of the material in test. This leads to small coils with high homogeneous field profiles, two conflicting arguments. The institute of medical engineering is working on the optimization of those coil geometries, the optimization of the signal chain, and the development of new applications for magnetic particle spectroscopes like the hybrid reconstruction method.

Magnetic Particle Spectrometry at the Institute of Medical Engineering.

Publications

2020[ to top ]
  • Chen, X., Behrends, A., Malhotra, A., Neumann, A. and Buzug, T. M.: Temperature-dependent spectrum measurement using a magnetic particle spectrometer, International Journal on Magnetic Particle Imaging, 6(2), Suppl 1, 2020, DOI: https://doi.org/10.18416/IJMPI.2020.2009034.
  • von Gladiss, A., Graeser, M., Behrends, A., Chen, X. and Buzug, T. M.: Efficient hybrid 3D system calibration for magnetic particle imaging systems using a dedicated device, Scientific Reports, 10(1), 2020, DOI: 10.1038/s41598-020-75122-5.
2019[ to top ]
  • Chen, X., Behrends, A., Neumann, A. and Buzug, T. M.: Sample Temperature Control in a Three-Dimensional Magnetic Particle Spectrometer, 211, 2019.
  • Rehberg, I., Richter, R., Hartung, S., Lucht, N., Hankiewicz, B. and Friedrich, T.: Measuring magnetic moments of polydisperse ferrofluids utilizing the inverse Langevin function, Physical Review B, 100(13), 134425, 2019, DOI: 10.1103/PhysRevB.100.134425.
  • Malhotra, A., von Gladiss, A., Behrends, A., Friedrich, T., Neumann, A., Buzug, T. M. and Lüdtke-Buzug, K.: Tracking the Growth of Superparamagnetic Nanoparticles with an In-Situ Magnetic Particle Spectrometer (INSPECT), Scientific Reports, 9(10538), 2019, DOI: https://doi.org/10.1038/s41598-019-46882-6.
2018[ to top ]
  • von Gladiss, A., Graeser, M. and Buzug, T. M.: Influence of Excitation Signal Coupling on Reconstructed Images in MPI, 47–48, 2018.
  • Chen, X., Graeser, M., Behrends, A., von Gladiss, A. and Buzug, T. M.: First Measurement and SNR Results of a 3D Magnetic Particle Spectrometer, International Journal on Magnetic Particle Imaging, 4(1), 2018, DOI: 10.18416/IJMPI.2018.1810001.
  • von Gladiss, A., Graeser, M. and Buzug, T. M.: Influence of Excitation Signal Coupling on Reconstructed Images in Magnetic Particle Imaging, In: Bildverarbeitung für die Medizin 2018. Informatik aktuell, Springer Vieweg, , 92–97, 2018, DOI: 10.1007/978-3-662-56537-7_36.
  • Chen, X., Neumann, A. and Buzug, T. M.: Optimizing Transmit Coils for a Magnetic Particle Spectrometer, 161, 2018.
2017[ to top ]
  • von Gladiss, A., Graeser, M., Szwargulski, P., Knopp, T. and Buzug, T. M.: Hybrid System Calibration for Multidimensional Magnetic Particle Imaging, Physics in Medicine and Biology, 62(9), 3392–3406, 2017, DOI: 10.1088/1361-6560/aa5340.
  • Chen, X., Graeser, M., Behrends, A., von Gladiss, A. and Buzug, T. M.: First measured result of the 3D Magnetic Particle Spectrometer, 123, 2017.
  • Graeser, M., von Gladiss, A., Weber, M. and Buzug, T. M.: Two dimensional magnetic particle spectrometry, Physics in Medicine and Biology, 62(9), 3378–3391, 2017, DOI: 10.1088/1361-6560/aa5bcd.
  • von Gladiss, A., Graeser, M. and Buzug, T. M.: Applying Compressed Sensing on Hybrid System Matrices in Magnetic Particle Imaging, 81, 2017.
2016[ to top ]
  • Schmidt, D., Graeser, M., von Gladiss, A., Buzug, T. M. and Steinhoff, U.: Imaging Characterization of MPI Tracers Employing Offset Measurements in a 2D Magnetic Particle Spectrometer, 114, 2016.
  • von Gladiss, A., Graeser, M., Ferguson, R. M., Khandhar, A. P., Kemp, S. J., Krishnan, K. M. and Buzug, T. M.: The Particle Response of Blended Nanoparticles in MPI, 115, 2016.
  • Schmidt, D., Graeser, M., Gladiss, A. von, Buzug, T. M. and Steinhoff, U.: Imaging Characterization of MPI Tracers Employing Offset Measurements in a two Dimensional Magnetic Particle Spectrometer, International Journal on Magnetic Particle Imaging, 2(1), 2016.
  • Chen, X., Behrends, A., Graeser, M., Neumann, A. and Buzug, T. M.: Optimizing the Coil Setup for a Three-Dimensional Magnetic Particle Spectrometer, 59, 2016.
  • Graeser, M., von Gladiss, A., Szwargulski, P., Ahlborg, M., Knopp, T. and Buzug, T. M.: Reconstruction of Experimental 2D MPI Data using a Hybrid System Matrix, 130, 2016.
2015[ to top ]
  • Graeser, M., Bente, K. and Buzug, T. M.: Dynamic Single-Domain Particle Model for Magnetite Particles with Combined Crystalline and Shape Anisotropy, Journal of Physics D: Applied Physics, 48(27), 275001, 2015, DOI: 10.1088/0022-3727/48/27/275001.
  • Panagiotopoulos, N., Duschka, R. L., Ahlborg, M., Bringout, G., Debbeler, C., Graeser, M., Kaethner, C., Lüdtke-Buzug, K., Medimagh, H., Stelzner, J., Buzug, T. M., Barkhausen, J., Vogt, F. and Haegele, J.: Magnetic particle imaging: current developments and future directions, International Journal of Nanomedicine, 10, 3097–3114, 2015, DOI: 10.2147/ijn.s70488.
  • Graeser, M., Ahlborg, M., Behrends, A., Bente, K., Bringout, G., Debbeler, C., v. Gladiß, A., Gräfe, K., Kaethner, C., Kaufmann, S., Lüdtke-Buzug, K., Medimagh, H., Stelzner, J., Weber, M. and Buzug, T. M.: A Device for Measureing the Trajectorey Dependent Magnetic Particle Performance for MPI, 2015, DOI: 10.1109/IWMPI.2015.7107078.
  • v. Gladiß, A., Graeser, M., Lüdtke-Buzug, K. and Buzug, T. M.: Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry, Current Directions in Biomedical Engineering, 1(1), 298–301, 2015, DOI: 10.1515/cdbme-2015-0074.
  • Graeser, M., Bente, K., Neumann, A. and Buzug, T. M.: Trajectory Dependent Particle Response for Anisotropic Mono Domain Particles in Magnetic Particle Imaging, Journal of Physics D: Applied Physics, 49(4), 2015, DOI: 10.1088/0022-3727/49/4/045007.
2014[ to top ]
  • Haegele, J., Lüdtke-Buzug, K., Schaecke, C., Graeser, M., Duschka, R. L., Panagiotopoulos, N., Buzug, T. M., Vogt, F. and Barkhausen, J.: Magnetic particle imaging: kinetics of the intravascular signal in vivo, International Journal of Nanomedicine, 4203–4209, 2014, DOI: 10.2147/ijn.s49976.
2013[ to top ]
  • Graeser, M., Knopp, T., Grüttner, M., Sattel, T., Bringout, G., Tenner, W., Wojtczyk, H. and Buzug, T.: Cancellation techniques for MPI, 2013, DOI: 10.1109/IWMPI.2013.6528331.
  • L, A. and K, L.-B.: Investigation of Different Tissue Samples with ΜCT and MPS for Determination of Iron Oxide Concentration in Tracers for MPI, 2013, DOI: 10.1515/bmt-2013-4100.
  • Graeser, M., Knopp, T., Grüttner, M., Sattel, T. F. and Buzug, T. M.: Analog receive signal processing for magnetic particle imaging, Medical Physics, 40(4), 042303, 2013, DOI: 10.1118/1.4794482.
2012[ to top ]
  • Marquina-Sanchez, R., Kaufmann, S., Ryschka, M., Sattel, T. and Buzug, T.: A Control Unit for a Magnetic Particle Spectrometer, 309–312, 2012, DOI: 10.1007/978-3-642-24133-8_49.
  • Graeser, M., Knopp, T., Sattel, T., Grüttner, M. and Buzug, T.: Signal separation in magnetic particle imaging, 2483–2485, 2012, DOI: 10.1109/NSSMIC.2012.6551566.
  • Graeser, M., Biederer, S., Grüttner, M., Wojtczyk, H., Sattel, T., Tenner, W., Bringout, G. and Buzug, T.: Determination of System Functions for Magnetic Particle Imaging, 59–64, 2012, DOI: 10.1007/978-3-642-24133-8_10.
2011[ to top ]
  • Graeser, M., Biederer, S., Grüttner, M., Wojtczyk, H., Tenner, W., Sattel, T. F., Gleich, B., Borgert, J. and Buzug, T. M.: Determination of a 1D-MPI-System-Function using a Magnetic Particle Spectroscope, 2011.
2010[ to top ]
  • Vogt, F. M., Barkhausen, J., Biederer, S., Sattel, T. F., Knopp, T., Lüdtke-Buzug, K. and Buzug, T. M.: Current Iron Oxide Nanoparticles - Impact on MRI and MPI, 12, 2010.
  • Biederer, S., Sattel, T., Knopp, T., Erbe, M., Lüdtke-Buzug, K., Vogt, F., Barkhausen, J. and Buzug, T.: A Spectrometer to Measure the Usability of Nanoparticles for Magnetic Particle Imaging, 60–65, 2010.
  • Biederer, S., Knopp, T., Sattel, T. F., Erbe, M. and Buzug, T. M.: Improved Estimation of the Magnetic Nanoparticle Diameter with a Magnetic Particle Spectrometer and Combined Fields, 954, 2010.
2009[ to top ]
  • Biederer, S., Sattel, T. F., Knopp, T., Lüdtke-Buzug, K., Gleich, B., Weizenecker, J., Borgert, J. and Buzug, T. M.: The Influence of the Particle-Size Distribution on the Image Resolution in Magnetic Particle Imaging, 499, 2009.
  • Biederer, S., Vogt, F. M., Lüdtke-Buzug, K., Knopp, T., Sattel, T. F., Barkhausen, J. and Buzug, T. M.: A Study on the Performance of Different Superparamagnetic Iron Oxide Particles in Magnetic Particle Imaging, 709, 2009.
  • Biederer, S., Knopp, T., Sattel, T. F., Lüdtke-Buzug, K., Gleich, B., Weizenecker, J., Borgert, J. and Buzug, T. M.: Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging, Journal of Physics D: Applied Physics, 42(20), 205007, 2009, DOI: 10.1088/0022-3727/42/20/205007.
  • Biederer, S., Knopp, T., Sattel, T., Lüdtke-Buzug, K., Gleich, B., Weizenecker, J., Borgert, J. and Buzug, T.: Estimation of Magnetic Nanoparticle Diameter with a Magnetic Particle Spectrometer, 61–64, 2009, DOI: 10.1007/978-3-642-03887-7_17.